Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Commun ; 15(1): 3270, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627364

RESUMEN

Epigenetic defects caused by hereditary or de novo mutations are implicated in various human diseases. It remains uncertain whether correcting the underlying mutation can reverse these defects in patient cells. Here we show by the analysis of myotonic dystrophy type 1 (DM1)-related locus that in mutant human embryonic stem cells (hESCs), DNA methylation and H3K9me3 enrichments are completely abolished by repeat excision (CTG2000 expansion), whereas in patient myoblasts (CTG2600 expansion), repeat deletion fails to do so. This distinction between undifferentiated and differentiated cells arises during cell differentiation, and can be reversed by reprogramming of gene-edited myoblasts. We demonstrate that abnormal methylation in DM1 is distinctively maintained in the undifferentiated state by the activity of the de novo DNMTs (DNMT3b in tandem with DNMT3a). Overall, the findings highlight a crucial difference in heterochromatin maintenance between undifferentiated (sequence-dependent) and differentiated (sequence-independent) cells, thus underscoring the role of differentiation as a locking mechanism for repressive epigenetic modifications at the DM1 locus.


Asunto(s)
Distrofia Miotónica , Humanos , Distrofia Miotónica/genética , Heterocromatina/genética , Diferenciación Celular/genética , Metilación de ADN , Epigénesis Genética
2.
Cells ; 12(18)2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37759552

RESUMEN

The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Mutación/genética , ARN Mensajero/metabolismo , Expansión de Repetición de Trinucleótido/genética , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/terapia
3.
Nat Commun ; 14(1): 3359, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291192

RESUMEN

Human trophoblast stem cells (hTSCs) can be derived from embryonic stem cells (hESCs) or be induced from somatic cells by OCT4, SOX2, KLF4 and MYC (OSKM). Here we explore whether the hTSC state can be induced independently of pluripotency, and what are the mechanisms underlying its acquisition. We identify GATA3, OCT4, KLF4 and MYC (GOKM) as a combination of factors that can generate functional hiTSCs from fibroblasts. Transcriptomic analysis of stable GOKM- and OSKM-hiTSCs reveals 94 hTSC-specific genes that are aberrant specifically in OSKM-derived hiTSCs. Through time-course-RNA-seq analysis, H3K4me2 deposition and chromatin accessibility, we demonstrate that GOKM exert greater chromatin opening activity than OSKM. While GOKM primarily target hTSC-specific loci, OSKM mainly induce the hTSC state via targeting hESC and hTSC shared loci. Finally, we show that GOKM efficiently generate hiTSCs from fibroblasts that harbor knockout for pluripotency genes, further emphasizing that pluripotency is dispensable for hTSC state acquisition.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Humanos , Reprogramación Celular/genética , Trofoblastos , Fibroblastos , Células Madre Embrionarias , Cromatina/genética , Factor 3 de Transcripción de Unión a Octámeros/genética
4.
Eur J Hum Genet ; 30(8): 980-983, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34776509

RESUMEN

Myotonic dystrophy type 1 (DM1) is an autosomal dominant muscular dystrophy that results from a CTG expansion (50-4000 copies) in the 3' UTR of the DMPK gene. The disease is classified into four or five somewhat overlapping forms, which incompletely correlate with expansion size in somatic cells of patients. With rare exception, it is affected mothers who transmit the congenital (CDM1) and most severe form of the disease. Why CDM1 is hardly ever transmitted by fathers remains unknown. One model to explain the almost exclusive transmission of CDM1 by affected mothers suggests a selection against hypermethylated large expansions in the germline of male patients. By assessing DNA methylation upstream to the CTG expansion in motile sperm cells of four DM1 patients, together with availability of human embryonic stem cell (hESCs) lines with paternally inherited hypermethylated expansions, we exclude the possibility that DMPK hypermethylation leads to selection against viable sperm cells (as indicated by motility) in DM1 patients.


Asunto(s)
Metilación de ADN , Distrofia Miotónica , Proteína Quinasa de Distrofia Miotónica , Humanos , Masculino , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Semen , Espermatozoides , Expansión de Repetición de Trinucleótido
5.
Neurobiol Aging ; 106: 351.e1-351.e6, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34272080

RESUMEN

Loss of function (LoF) mutations in Optineurin can cause recessive amyotrophic lateral sclerosis (ALS) with some heterozygous LoF mutations associated with dominant ALS. The molecular mechanisms underlying the variable inheritance pattern associated with OPTN mutations have remained elusive. We identified that affected members of a consanguineous Middle Eastern ALS kindred possessed a novel homozygous p.S174X OPTN mutation. Analysis of these primary fibroblast lines from family members identified that the p.S174X mutation reduces OPTN mRNA expression in an allele-dependent fashion by nonsense mediated decay. Western blotting correlated a reduced expression in heterozygote carriers but a complete absence of OPTN protein in the homozygous carrier. This data suggests that the p.S174X truncation mutation causes recessive ALS through LoF. However, functional analysis detected a significant increase in mitophagy markers TOM20 and COXIV, and higher rates of mitochondrial respiration and ATP levels in heterozygous carriers only. This suggests that heterozygous LoF OPTN mutations may not be causative in a Mendelian manner but may potentially behave as contributory ALS risk factors.


Asunto(s)
Alelos , Esclerosis Amiotrófica Lateral/genética , Proteínas de Ciclo Celular/genética , Genes Recesivos/genética , Estudios de Asociación Genética/métodos , Mutación con Pérdida de Función/genética , Proteínas de Transporte de Membrana/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Anciano , Anciano de 80 o más Años , Consanguinidad , Femenino , Expresión Génica/genética , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Medio Oriente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Riesgo
6.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921346

RESUMEN

Epimutations refer to mistakes in the setting or maintenance of epigenetic marks in the chromatin. They lead to mis-expression of genes and are often secondary to germline transmitted mutations. As such, they are the cause for a considerable number of genetically inherited conditions in humans. The correction of these types of epigenetic defects constitutes a good paradigm to probe the fundamental mechanisms underlying the development of these diseases, and the molecular basis for the establishment, maintenance and regulation of epigenetic modifications in general. Here, we review the data to date, which is limited to repetitive elements, that relates to the applications of key editing tools for addressing the epigenetic aspects of various epigenetically regulated diseases. For each approach we summarize the efforts conducted to date, highlight their contribution to a better understanding of the molecular basis of epigenetic mechanisms, describe the limitations of each approach and suggest perspectives for further exploration in this field.


Asunto(s)
Cromatina/genética , Epigénesis Genética/genética , Edición Génica , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/prevención & control , Mutación de Línea Germinal/genética , Humanos
7.
Methods Mol Biol ; 1942: 29-48, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30900173

RESUMEN

The vast majority of fragile X affected patients do not transcribe FMR1 due to a CGG repeat expansion in the 5'-untranslated region of the FMR1 gene. When the CGGs considerably expand, it elicits abnormal DNA methylation and histone modifications, which are responsible for FMR1 transcriptional silencing. In this chapter, we describe in detail two commonly used protocols for monitoring the epigenetic state of the FMR1 gene that bypass the difficulty in directly analyzing the CGGs. One protocol is for accurately measuring DNA methylation levels and the other is for profiling histone modifications.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Repeticiones de Trinucleótidos , Regiones no Traducidas 5' , Silenciador del Gen , Humanos
8.
Brain Sci ; 9(2)2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30769941

RESUMEN

Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from a deficiency in the fragile X mental retardation protein (FMRP) due to a CGG repeat expansion in the 5'-UTR of the X-linked FMR1 gene. When CGGs expand beyond 200 copies, they lead to epigenetic gene silencing of the gene. In addition, the greater the allele size, the more likely it will become unstable and exhibit mosaicism for expansion size between and within tissues in affected individuals. The timing and mechanisms of FMR1 epigenetic gene silencing and repeat instability are far from being understood given the lack of appropriate cellular and animal models that can fully recapitulate the molecular features characteristic of the disease pathogenesis in humans. This review summarizes the data collected to date from mutant human embryonic stem cells, induced pluripotent stem cells, and hybrid fusions, and discusses their contribution to the investigation of FXS, their key limitations, and future prospects.

9.
Genetics ; 210(4): 1239-1252, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30396881

RESUMEN

Pathological mutations involving noncoding microsatellite repeats are typically located near promoters in CpG islands and are coupled with extensive repeat instability when sufficiently long. What causes these regions to be prone to repeat instability is not fully understood. There is a general consensus that instability results from the induction of unusual structures in the DNA by the repeats as a consequence of mispairing between complementary strands. In addition, there is some evidence that repeat instability is mediated by RNA transcription through the formation of three-stranded nucleic structures composed of persistent DNA:RNA hybrids, concomitant with single-strand DNA displacements (R-loops). Using human embryonic stem cells with wild-type and repeat expanded alleles in the FMR1 (CGGs) and C9orf72 (GGGGCCs) genes, we show that these loci constitute preferential sites (hotspots) for DNA unpairing. When R-loops are formed, DNA unpairing is more extensive, and is coupled with the interruptions of double-strand structures by the nontranscribing (G-rich) DNA strand. These interruptions are likely to reflect unusual structures in the DNA that drive repeat instability when the G-rich repeats considerably expand. Further, we demonstrate that when the CGGs in FMR1 are hyper-methylated and transcriptionally inactive, local DNA unpairing is abolished. Our study thus takes one more step toward the identification of dynamic, unconventional DNA structures across the G-rich repeats at FMR1 and C9orf72 disease-associated loci.


Asunto(s)
Proteína C9orf72/genética , Metilación de ADN/genética , Expansión de las Repeticiones de ADN/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Alelos , Islas de CpG/genética , ADN de Cadena Simple/genética , Células Madre Embrionarias Humanas/metabolismo , Humanos , Repeticiones de Microsatélite/genética , Mutación/genética
10.
Mol Genet Genomic Med ; 6(5): 811-818, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30003711

RESUMEN

BACKGROUND: Prader-Willi syndrome (PWS) is a multisystem genetic disorder characterized by lack of satiety leading to morbid obesity, variable degrees of mental retardation, behavior disorders, short stature, and hypogonadism. The underlying genetic cause for PWS is an imprinting defect resulting from a lack of expression of several paternally inherited genes embedded within the 15q11.2-q13 region. Although the clinical expression of hypogonadism in PWS is variable, there are no known cases of fertility in PWS men. In this paper, we described a pure, nearly diploid seminoma in an apparently 32 year-old infertile man with PWS due to maternal uniparental disomy (UPD) on chromosome 15. The development of a germ cell tumor in this subject was an unanticipated result. The aim of this study was to explore the origin of the germ cell tumor in this PWS male patient. METHODS: To explain the origin of the germ cell tumor (seminoma) in our PWS patient we have characterized the tumor for cell morphology and tumor type by pathological examination (H&E and immuno-stainings), evaluated its karyotype by chromosomal microarray analysis and confirmed its UPD origin by haplotype analysis. In addition, DNA methylation status of the PWS- and H19- imprinting centers in wild-type and affected fibroblasts, patient derived induced pluripotent stem cells (iPSCs), and PWS seminoma were determined by bisulfite DNA colony sequencing. RESULTS: To explain the apparent contradiction between the existence of a germ cell tumor and hypogonadism we first confirmed the germ cell origin of the tumor. Next, we determined the tumor chromosomal composition, and validated the presence of a maternal UPD in all examined cell types from this patient. Finally, we characterized the maternal imprints in the PWS and H19 imprinting centers in the tumor and compared them with patient's fibroblasts and iPSCs derived from them. Unpredictably, methylation was reduced to 50% in the tumor, while preserved in the other cell types. CONCLUSION: We infer from this assay that the loss of methylation in the PWS-IC specifically in the tumor of our patient is most likely a locus-specific event resulting from imprint relaxation rather than from general resetting of the imprints throughout the genome during germ line specification.


Asunto(s)
Cromosomas Humanos Par 15 , Metilación de ADN , ADN de Neoplasias , Síndrome de Prader-Willi , Seminoma , Neoplasias Testiculares , Adulto , Cromosomas Humanos Par 15/genética , Cromosomas Humanos Par 15/metabolismo , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Humanos , Masculino , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/patología , Seminoma/genética , Seminoma/metabolismo , Seminoma/patología , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patología
11.
Front Mol Neurosci ; 11: 31, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467618

RESUMEN

Fragile X syndrome (FXS) is one of the most common heritable forms of cognitive impairment. It results from a fragile X mental retardation protein (FMRP) protein deficiency caused by a CGG repeat expansion in the 5'-UTR of the X-linked FMR1 gene. Whereas in most individuals the number of CGGs is steady and ranges between 5 and 44 units, in patients it becomes extensively unstable and expands to a length exceeding 200 repeats (full mutation). Interestingly, this disease is exclusively transmitted by mothers who carry a premutation allele (55-200 CGG repeats). When the CGGs reach the FM range, they trigger the spread of abnormal DNA methylation, which coincides with a switch from active to repressive histone modifications. This results in epigenetic gene silencing of FMR1 presumably by a multi-stage, developmentally regulated process. The timing of FMR1 hypermethylation and transcription silencing is still hotly debated. There is evidence that hypermethylation varies considerably between and within the tissues of patients as well as during fetal development, thus supporting the view that FMR1 silencing is a post-zygotic event that is developmentally structured. On the other hand, it may be established in the female germ line and transmitted to the fetus as an integral part of the mutation. This short review summarizes the data collected to date concerning the timing of FMR1 epigenetic gene silencing and reassess the evidence in favor of the theory that gene inactivation takes place by a developmentally regulated process around the 10th week of gestation.

12.
Genes (Basel) ; 7(10)2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27690107

RESUMEN

Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from a loss-of-function mutation by a CGG repeat expansion at the 5' untranslated region of the X-linked fragile X mental retardation 1 (FMR1) gene. Expansion of the CGG repeats beyond 200 copies results in protein deficiency by leading to aberrant methylation of the FMR1 promoter and the switch from active to repressive histone modifications. Additionally, the CGGs become increasingly unstable, resulting in high degree of variation in expansion size between and within tissues of affected individuals. It is still unclear how the FMR1 protein (FMRP) deficiency leads to disease pathology in neurons. Nor do we know the mechanisms by which the CGG expansion results in aberrant DNA methylation, or becomes unstable in somatic cells of patients, at least in part due to the lack of appropriate animal or cellular models. This review summarizes the current contribution of pluripotent stem cells, mutant human embryonic stem cells, and patient-derived induced pluripotent stem cells to disease modeling of FXS for basic and applied research, including the development of new therapeutic approaches.

13.
Stem Cell Reports ; 7(5): 927-940, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27773700

RESUMEN

We established two human embryonic stem cell (hESC) lines with a GGGGCC expansion in the C9orf72 gene (C9), and compared them with haploidentical and unrelated C9 induced pluripotent stem cells (iPSCs). We found a marked difference in C9 methylation between the cells. hESCs and parental fibroblasts are entirely unmethylated while the iPSCs are hypermethylated. In addition, we show that the expansion alters promoter usage and interferes with the proper splicing of intron 1, eventually leading to the accumulation of repeat-containing mRNA following neural differentiation. These changes are attenuated in C9 iPSCs, presumably owing to hypermethylation. Altogether, this study highlights the importance of neural differentiation in the pathogenesis of disease and points to the potential role of hypermethylation as a neuroprotective mechanism against pathogenic mRNAs, envisaging a milder phenotype in C9 iPSCs.


Asunto(s)
Proteína C9orf72/genética , Metilación de ADN , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Empalme Alternativo , Esclerosis Amiotrófica Lateral/genética , Diferenciación Celular , Línea Celular , Islas de CpG , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Haplotipos , Humanos , Células Madre Pluripotentes Inducidas/citología
14.
Methods Mol Biol ; 1307: 149-72, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25520283

RESUMEN

One of the great advantages of embryonic stem (ES) cells over other cell types is their accessibility to genetic manipulation. They can easily undergo genetic modifications while remaining pluripotent, and can be selectively propagated, allowing the clonal expansion of genetically altered cells in culture. Since the first isolation of ES cells in mice, many effective techniques have been developed for gene delivery and manipulation of ES cells. These include transfection, electroporation, and infection protocols, as well as different approaches for inserting, deleting, or changing the expression of genes. These methods proved to be extremely useful in mouse ES cells, for monitoring and directing differentiation, discovering unknown genes, and studying their function, and are now being extensively implemented in human ES cells (HESCs). This chapter describes the different approaches and methodologies that have been applied for the genetic manipulation of HESCs and their applications. Detailed protocols for generating clones of genetically modified HESCs by transfection, electroporation, and infection will be described, with special emphasis on the important technical details that are required for this purpose. All protocols are equally effective in human-induced pluripotent stem (iPS) cells.


Asunto(s)
Técnicas Genéticas , Células Madre Embrionarias Humanas/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Separación Celular , Células Cultivadas , Electroporación , Embrión de Mamíferos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Ratones , Mitomicina/farmacología , Técnicas de Cultivo de Tejidos , Transfección
15.
PLoS One ; 10(10): e0138893, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26473610

RESUMEN

We report on the derivation of a diploid 46(XX) human embryonic stem cell (HESC) line that is homozygous for the common deletion associated with Spinal muscular atrophy type 1 (SMA) from a pathenogenetic embryo. By characterizing the methylation status of three different imprinted loci (MEST, SNRPN and H19), monitoring the expression of two parentally imprinted genes (SNRPN and H19) and carrying out genome-wide SNP analysis, we provide evidence that this cell line was established from the activation of a mutant oocyte by diploidization of the entire genome. Therefore, our SMA parthenogenetic HESC (pHESC) line provides a proof-of-principle for the establishment of diseased HESC lines without the need for gene manipulation. As mutant oocytes are easily obtained and readily available during preimplantation genetic diagnosis (PGD) cycles, this approach should provide a powerful tool for disease modelling and is especially advantageous since it can be used to induce large or complex mutations in HESCs, including gross DNA alterations and chromosomal rearrangements, which are otherwise hard to achieve.


Asunto(s)
Impresión Genómica , Homocigoto , Células Madre Embrionarias Humanas , Mutación , Partenogénesis , Atrofias Musculares Espinales de la Infancia , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Polimorfismo de Nucleótido Simple , Proteínas/genética , Proteínas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/metabolismo , Atrofias Musculares Espinales de la Infancia/patología , Proteínas Nucleares snRNP/genética , Proteínas Nucleares snRNP/metabolismo
16.
Stem Cell Reports ; 5(2): 221-31, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26190529

RESUMEN

CTG repeat expansion in DMPK, the cause of myotonic dystrophy type 1 (DM1), frequently results in hypermethylation and reduced SIX5 expression. The contribution of hypermethylation to disease pathogenesis and the precise mechanism by which SIX5 expression is reduced are unknown. Using 14 different DM1-affected human embryonic stem cell (hESC) lines, we characterized a differentially methylated region (DMR) near the CTGs. This DMR undergoes hypermethylation as a function of expansion size in a way that is specific to undifferentiated cells and is associated with reduced SIX5 expression. Using functional assays, we provide evidence for regulatory activity of the DMR, which is lost by hypermethylation and may contribute to DM1 pathogenesis by causing SIX5 haplo-insufficiency. This study highlights the power of hESCs in disease modeling and describes a DMR that functions both as an exon coding sequence and as a regulatory element whose activity is epigenetically hampered by a heritable mutation.


Asunto(s)
Metilación de ADN , Expansión de las Repeticiones de ADN , Células Madre Embrionarias/metabolismo , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Islas de CpG , Células Madre Embrionarias/citología , Epigénesis Genética , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos
17.
World J Stem Cells ; 7(5): 823-38, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26131313

RESUMEN

Pathogenic mutations involving DNA repeat expansions are responsible for over 20 different neuronal and neuromuscular diseases. All result from expanded tracts of repetitive DNA sequences (mostly microsatellites) that become unstable beyond a critical length when transmitted across generations. Nearly all are inherited as autosomal dominant conditions and are typically associated with anticipation. Pathologic unstable repeat expansions can be classified according to their length, repeat sequence, gene location and underlying pathologic mechanisms. This review summarizes the current contribution of mutant pluripotent stem cells (diseased human embryonic stem cells and patient-derived induced pluripotent stem cells) to the research of unstable repeat pathologies by focusing on particularly large unstable noncoding expansions. Among this class of disorders are Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome, myotonic dystrophy type 1 and myotonic dystrophy type 2, Friedreich ataxia and C9 related amyotrophic lateral sclerosis and/or frontotemporal dementia, Facioscapulohumeral Muscular Dystrophy and potentially more. Common features that are typical to this subclass of conditions are RNA toxic gain-of-function, epigenetic loss-of-function, toxic repeat-associated non-ATG translation and somatic instability. For each mechanism we summarize the currently available stem cell based models, highlight how they contributed to better understanding of the related mechanism, and discuss how they may be utilized in future investigations.

18.
Stem Cell Reports ; 3(5): 699-706, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25418717

RESUMEN

Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from epigenetic silencing of the X-linked FMR1 gene by a CGG expansion in its 5'-untranslated region. Taking advantage of a large set of FXS-affected human embryonic stem cell (HESC) lines and isogenic subclones derived from them, we show that FMR1 hypermethylation commonly occurs in the undifferentiated state (six of nine lines, ranging from 24% to 65%). In addition, we demonstrate that hypermethylation is tightly linked with FMR1 transcriptional inactivation in undifferentiated cells, coincides with loss of H3K4me2 and gain of H3K9me3, and is unrelated to CTCF binding. Taken together, these results demonstrate that FMR1 epigenetic gene silencing takes place in FXS HESCs and clearly highlights the importance of examining multiple cell lines when investigating FXS and most likely other epigenetically regulated diseases.


Asunto(s)
Células Madre Embrionarias/metabolismo , Epigénesis Genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Silenciador del Gen , Regiones no Traducidas 5'/genética , Western Blotting , Línea Celular , Metilación de ADN , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Expresión Génica , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Factor 3 de Transcripción de Unión a Octámeros/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/genética , Análisis de Secuencia de ADN , Expansión de Repetición de Trinucleótido/genética , Inactivación del Cromosoma X
19.
Nat Genet ; 46(6): 551-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24816254

RESUMEN

Parental imprinting is a form of epigenetic regulation that results in parent-of-origin differential gene expression. To study Prader-Willi syndrome (PWS), a developmental imprinting disorder, we generated case-derived induced pluripotent stem cells (iPSCs) harboring distinct aberrations in the affected region on chromosome 15. In studying PWS-iPSCs and human parthenogenetic iPSCs, we unexpectedly found substantial upregulation of virtually all maternally expressed genes (MEGs) in the imprinted DLK1-DIO3 locus on chromosome 14. Subsequently, we determined that IPW, a long noncoding RNA in the critical region of the PWS locus, is a regulator of the DLK1-DIO3 region, as its overexpression in PWS and parthenogenetic iPSCs resulted in downregulation of MEGs in this locus. We further show that gene expression changes in the DLK1-DIO3 region coincide with chromatin modifications rather than DNA methylation levels. Our results suggest that a subset of PWS phenotypes may arise from dysregulation of an imprinted locus distinct from the PWS region.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Péptidos y Proteínas de Señalización Intercelular/genética , Yoduro Peroxidasa/genética , Proteínas de la Membrana/genética , Síndrome de Prader-Willi/genética , ARN no Traducido/genética , Adolescente , Encéfalo/metabolismo , Proteínas de Unión al Calcio , Cromatina/metabolismo , Aberraciones Cromosómicas , Metilación de ADN , Regulación hacia Abajo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Impresión Genómica , Humanos , Lactante , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Transcripción Genética , Transcriptoma
20.
Stem Cells Dev ; 21(3): 363-72, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21585244

RESUMEN

The factors limiting the rather inefficient derivation of human embryonic stem cells (HESCs) are not fully understood. The aim of this study was to analyze the sex ratio in our 42 preimplantation genetic diagnosis (PGD)-HESC lines, in an attempt to verify its affect on the establishment of HESC lines. The ratio between male and female PGD-derived cell lines was compared. We found a significant increase in female cell lines (76%). This finding was further confirmed by a meta-analysis for combining the results of all PGD-derived HESC lines published to date (148) and all normal karyotyped HESC lines derived from spare in vitro fertilization embryos worldwide (397). Further, gender determination of embryos demonstrated that this difference originates from the actual derivation process rather than from unequal representation of male and female embryos. It can therefore be concluded that the clear-cut tendency for female preponderance is attributed to suboptimal culture conditions rather than from a true gender imbalance in embryos used for derivation of HESC lines. We propose a mechanism in which aberrant X chromosome inactivation and/or overexpression of critical metabolic X-linked genes might explain this sex dimorphism.


Asunto(s)
Embrión de Mamíferos/fisiología , Células Madre Embrionarias/citología , Razón de Masculinidad , Biomarcadores/análisis , Línea Celular , Cromosomas Humanos/fisiología , Embrión de Mamíferos/citología , Desarrollo Embrionario , Células Madre Embrionarias/fisiología , Femenino , Genoma Humano , Humanos , Cariotipo , Masculino , Diagnóstico Preimplantación , Inactivación del Cromosoma X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...